Link Search Menu Expand Document

Worksheet 23

  1. Compute the determinant of (110211113)\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 & \\ -1 & 1 & 3 \end{pmatrix} by hand using a cofactor expansion.

  2. Show that if AA is an n×nn \times n matrix with each AijZA_{ij} \in \mathbb{Z} then detAZ\det A \in \mathbb{Z}.

  3. Show that the cofactor expansion satisfies det(S(i,c)A)=cdetA\det(S(i,c)A) = c \det A Try n=2n=2 and n=3n=3 to get a feel for the question.